1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material.

intensity / MW m ⁻²	thickness / mm
0.91	0.40
0.69	0.80
0.52	1.20
0.40	1.60
0.30	2.00
0.23	2.40
0.17	2.80

Fig. 1

(a) On Fig. 2 plot a graph of transmitted X-ray intensity against thickness of absorber.

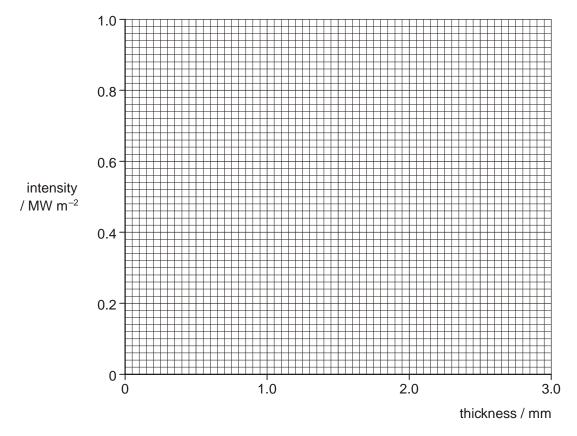


Fig. 2

(b) (i) Find the thickness that reduces the intensity of the incident beam by one half.

thickness = mm

[1]

(ii) Use your answer to (b)(i) to calculate the linear attenuation coefficient μ . Give the unit for your answer.

 μ = unit

[4]

[Total 8 marks]

2. The quality of ultrasound images in increasing at a phenomenal pace, thanks to advances in computerised imaging techniques. The computer technology is sophisticated enough to monitor and display tiny ultrasound signals from a patient.

The ratio of reflected intensity to incident intensity for ultrasound reflected at a boundary is related to the acoustic impedance Z_1 of the medium on one side of the boundary and the acoustic impedance Z_2 of the medium on the other side of the boundary by the following equation.

$$\frac{\text{reflected intensity}}{\text{incident intensity}} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$

(a) State **two** factors that determine the value of the acoustic impedance.

.....

(b) An ultrasound investigation was used to identify a small volume of substance in a patient. It is suspected that this substance is either blood or muscle.

During the ultrasound investigation, an ultrasound pulse of frequency of 3.5×10^6 Hz passed through soft tissue and then into the small volume of unidentified substance. A pulse of ultrasound reflected from the front surface of the volume was detected 26.5 μ s later. The ratio of the reflected intensity to the incident intensity, for the ultrasound pulse reflected at this boundary was found to be 4.42×10^{-4} . The table below shows data for the acoustic impedances of various materials found in a human body.

medium	acoustic impedance Z/ kg m ⁻² s ⁻¹
air	4.29×10^2
blood	1.59 × 10 ⁶
water	1.50×10^6
brain tissue	1.58×10^6
soft tissue	1.63 × 10 ⁶
bone	7.78 × 10 ⁶
muscle	1.70 × 10 ⁶

(i)	Use appropriate data from the table above to identify the unknown medium.
	You must show your reasoning.

medium =	·	

(ii) Calculate the depth at which the ultrasound pulse was reflected if the speed of ultrasound in soft tissue is 1.54 km s⁻¹.

[4]

		(iii)	Calculate the wavelength of the ultrasound in the soft tissue.	
			wavelength =m	
			[T-4-140	[2]
			[Total 10 mai	KSJ
3.	An a		e person in the UK will have at least 30 X-ray photographs taken in their	
			take an X-ray photograph, the X-ray beam is passed through an aluminium ely remove low energy X-ray photons before reaching the patient.	
	(a)	Sugg	gest why it is necessary to remove these low energy X-rays.	
				[1]

(b)	The average linear attenuation coefficient for X-rays that penetrate the aluminium
	is 250 m^{-1} .

The intensity of an X-ray beam after travelling through 2.5 cm of aluminium is $347~\mathrm{W}~\mathrm{m}^{-2}$.

Show that the intensity incident on the aluminium is about 2×10^5 W m⁻².

[3]

(c) The X-ray beam at the filter has a circular cross-section of diameter 0.20 cm. Calculate the power of the X-ray beam from the aluminium filter. Assume that the beam penetrates the aluminium filter as a parallel beam.

power = W

[2]

[Total 6 marks]

4. In order to take an X-ray photograph, the X-ray beam is passed through an aluminium filter to remove low energy X-ray photons before reaching the patient.

(a) Suggest why it is necessary to remove these low-energy X-rays.

[1]

(b) The average linear attenuation coefficient for X-rays that penetrate the aluminium is $250~\text{m}^{-1}$. The intensity of an X-ray beam after travelling through 2.5 cm of aluminium is $347~\text{W m}^{-2}$.

Show that the intensity incident on the aluminium is about 2×10^5 W m⁻².

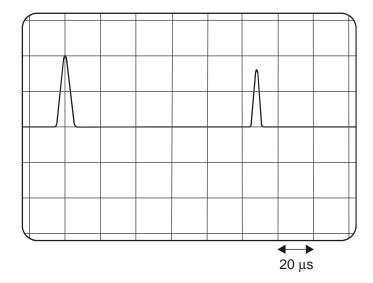
(c)	The X-ray beam at the filter has a circular cross-section of diameter 0.20 cm.
	Calculate the power of the X-ray beam emerging from the aluminium filter.
	Assume that the beam penetrates the aluminium filter as a parallel beam.

[2]

- (d) The total power of X-rays generated by an X-ray tube is 18W. The efficiency of conversion of kinetic energy of the electrons into X-ray photon energy is 0.15%.
 - (i) Calculate the power of the electron beam.

(ii)	Calculate the velocity of the electrons if the rate of arrival of electrons is
	$7.5 \times 10^{17} \mathrm{s}^{-1}$. Relativistic effects may be ignored.

velocity =
$$m s^{-1}$$
 [2]


(iii) Calculate the p.d. across the X-ray tube required to give the electrons the velocity calculated in (ii).

[3]

[Total 13 marks]

5.	Full- cand	Full-body CT scans produce detailed 3-D information about a patient and can identify cancers at an early stage in their development.			
	(a)	Describe how a CT scan image is produced, referring to the physics princip involved.	les		
			[7]		
	(b)	State and explain two reasons why full-body CT scans are not offered for rechecking of healthy patients.	egular		
		Г	[3] [Total 10 marks]		

6. The diagram below shows a trace on a cathode-ray oscilloscope (CRO) of an ultrasound reflection from the front edge and rear edge of a foetal head.

The CRO timebase is set to 20 μs cm⁻¹. The speed of ultrasound in the foetal head is 1.5×10^3 m s⁻¹.

(i) Calculate the size of the foetal head.

(11)	applied between the ultrasound transducer and the skin of the mother.	een
		[Total 7 ma
		••

8.	Explain how ultrasound is produced using a piezoelectric crystal such as quartz	
		 [Total 2 marks]
9.	Describe the use of a contrast medium, such as barium, in the imaging of intern structures. Your answer should include • how an image of an internal body structure is produced from an X-ra • an explanation of the use of a contrast medium • examples of the types of structure that can be imaged by this process	ay beam
		••
		•••
		•••

[Total 8 marks]