1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material. | intensity / MW m ⁻² | thickness / mm | |--------------------------------|----------------| | 0.91 | 0.40 | | 0.69 | 0.80 | | 0.52 | 1.20 | | 0.40 | 1.60 | | 0.30 | 2.00 | | 0.23 | 2.40 | | 0.17 | 2.80 | Fig. 1 (a) On Fig. 2 plot a graph of transmitted X-ray intensity against thickness of absorber. Fig. 2 (b) (i) Find the thickness that reduces the intensity of the incident beam by one half. thickness = mm [1] (ii) Use your answer to (b)(i) to calculate the linear attenuation coefficient μ . Give the unit for your answer. μ = unit [4] [Total 8 marks] 2. The quality of ultrasound images in increasing at a phenomenal pace, thanks to advances in computerised imaging techniques. The computer technology is sophisticated enough to monitor and display tiny ultrasound signals from a patient. The ratio of reflected intensity to incident intensity for ultrasound reflected at a boundary is related to the acoustic impedance Z_1 of the medium on one side of the boundary and the acoustic impedance Z_2 of the medium on the other side of the boundary by the following equation. $$\frac{\text{reflected intensity}}{\text{incident intensity}} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$ (a) State **two** factors that determine the value of the acoustic impedance. (b) An ultrasound investigation was used to identify a small volume of substance in a patient. It is suspected that this substance is either blood or muscle. During the ultrasound investigation, an ultrasound pulse of frequency of 3.5×10^6 Hz passed through soft tissue and then into the small volume of unidentified substance. A pulse of ultrasound reflected from the front surface of the volume was detected 26.5 μ s later. The ratio of the reflected intensity to the incident intensity, for the ultrasound pulse reflected at this boundary was found to be 4.42×10^{-4} . The table below shows data for the acoustic impedances of various materials found in a human body. | medium | acoustic impedance Z/ kg m ⁻² s ⁻¹ | |--------------|--| | air | 4.29×10^2 | | blood | 1.59 × 10 ⁶ | | water | 1.50×10^6 | | brain tissue | 1.58×10^6 | | soft tissue | 1.63 × 10 ⁶ | | bone | 7.78 × 10 ⁶ | | muscle | 1.70 × 10 ⁶ | | (i) | Use appropriate data from the table above to identify the unknown medium. | |-----|---| | | You must show your reasoning. | | medium = | · | | |----------|---|--| | | | | (ii) Calculate the depth at which the ultrasound pulse was reflected if the speed of ultrasound in soft tissue is 1.54 km s⁻¹. [4] | | | (iii) | Calculate the wavelength of the ultrasound in the soft tissue. | | |----|------|-------|--|-----| wavelength =m | | | | | | [T-4-140 | [2] | | | | | [Total 10 mai | KSJ | | | | | | | | | | | | | | 3. | An a | | e person in the UK will have at least 30 X-ray photographs taken in their | | | | | | take an X-ray photograph, the X-ray beam is passed through an aluminium ely remove low energy X-ray photons before reaching the patient. | | | | (a) | Sugg | gest why it is necessary to remove these low energy X-rays. | | | | | | | | | | | | | | | | | | | [1] | | | | | | | | (b) | The average linear attenuation coefficient for X-rays that penetrate the aluminium | |-----|--| | | is 250 m^{-1} . | The intensity of an X-ray beam after travelling through 2.5 cm of aluminium is $347~\mathrm{W}~\mathrm{m}^{-2}$. Show that the intensity incident on the aluminium is about 2×10^5 W m⁻². [3] (c) The X-ray beam at the filter has a circular cross-section of diameter 0.20 cm. Calculate the power of the X-ray beam from the aluminium filter. Assume that the beam penetrates the aluminium filter as a parallel beam. power = W [2] [Total 6 marks] 4. In order to take an X-ray photograph, the X-ray beam is passed through an aluminium filter to remove low energy X-ray photons before reaching the patient. (a) Suggest why it is necessary to remove these low-energy X-rays. |
 |
 | |------|------| | | | |
 |
 | [1] (b) The average linear attenuation coefficient for X-rays that penetrate the aluminium is $250~\text{m}^{-1}$. The intensity of an X-ray beam after travelling through 2.5 cm of aluminium is $347~\text{W m}^{-2}$. Show that the intensity incident on the aluminium is about 2×10^5 W m⁻². | (c) | The X-ray beam at the filter has a circular cross-section of diameter 0.20 cm. | |-----|--| | | Calculate the power of the X-ray beam emerging from the aluminium filter. | | | Assume that the beam penetrates the aluminium filter as a parallel beam. | [2] - (d) The total power of X-rays generated by an X-ray tube is 18W. The efficiency of conversion of kinetic energy of the electrons into X-ray photon energy is 0.15%. - (i) Calculate the power of the electron beam. | (ii) | Calculate the velocity of the electrons if the rate of arrival of electrons is | |------|--| | | $7.5 \times 10^{17} \mathrm{s}^{-1}$. Relativistic effects may be ignored. | velocity = $$m s^{-1}$$ [2] (iii) Calculate the p.d. across the X-ray tube required to give the electrons the velocity calculated in (ii). [3] [Total 13 marks] | 5. | Full-
cand | Full-body CT scans produce detailed 3-D information about a patient and can identify cancers at an early stage in their development. | | | | |----|---------------|--|-------------------------|--|--| | | (a) | Describe how a CT scan image is produced, referring to the physics princip involved. | les | [7] | | | | | | | | | | | | (b) | State and explain two reasons why full-body CT scans are not offered for rechecking of healthy patients. | egular | Г | [3]
[Total 10 marks] | | | | | | | | | | **6.** The diagram below shows a trace on a cathode-ray oscilloscope (CRO) of an ultrasound reflection from the front edge and rear edge of a foetal head. The CRO timebase is set to 20 μs cm⁻¹. The speed of ultrasound in the foetal head is 1.5×10^3 m s⁻¹. (i) Calculate the size of the foetal head. | (11) | applied between the ultrasound transducer and the skin of the mother. | een | |------|---|-------------| [Total 7 ma | | | | | | | | | | | | •• | 8. | Explain how ultrasound is produced using a piezoelectric crystal such as quartz | | |----|--|---------------------| | | | | | | | | | | |
[Total 2 marks] | | 9. | Describe the use of a contrast medium, such as barium, in the imaging of intern structures. Your answer should include • how an image of an internal body structure is produced from an X-ra • an explanation of the use of a contrast medium • examples of the types of structure that can be imaged by this process | ay beam | •• | ••• | | | | | | | | ••• | | | | | | | | | [Total 8 marks]